Previous Winners

2014 Prof. MICHAL BIRAN, Institute of Asian and African Studies, Faculty of Humanities
Department of Asian Studies, Islamic and Middle Eastern Studies, Institute of Asian and African Studies
Facility of Humanities
Inner Asian history: Mobility Empire and Cross-Cultural Contacts in Mongol Eurasia

2013 Prof. HIRI RAEZ, Institute of Chemistry and Fritz Haber Minerva Research Center for Molecular Dynamics, Faculty of Science
Department of Chemistry and Fritz Haber Minerva Research Center for Molecular Dynamics, Faculty of Science
Developing Novel Theoretical and Computational Techniques for Facile Determination of the Energy Levels of Charge Carriers in Large Molecular Systems and Nanomaterials

2012 Dr. ERAN MISHKMER, Institute of Chemistry and Fritz Haber Minerva Research Center for Molecular Dynamics, Faculty of Science
Department of Chemistry and Fritz Haber Minerva Research Center for Molecular Dynamics, Faculty of Science
Using Quantum-Physical Approaches and Sophisticated Imaging Techniques to Understand Quantum Particles in Solid Cells

2011 Prof. DAVID WURD, Institute of Chemistry and the Center for Nanoscience and Nanotechnology, Faculty of Science
Department of Chemistry and the Center for Nanoscience and Nanotechnology, Faculty of Science
Using Quantum-Physical Approaches and Sophisticated Imaging Techniques to Understand Quantum Particles in Solid Cells

2010 Prof. MEIR AIRAS, Institute of Chemistry and the Center for Nanoscience and Nanotechnology, Faculty of Science
Department of Chemistry and the Center for Nanoscience and Nanotechnology, Faculty of Science
Using Quantum-Physical Approaches and Sophisticated Imaging Techniques to Understand Quantum Particles in Solid Cells

2009 Prof. ISAAC TIVY-SHIVARIN, Institute of Chemistry and the Center for Nanoscience and Nanotechnology, Faculty of Science
Department of Chemistry and the Center for Nanoscience and Nanotechnology, Faculty of Science
Using Quantum-Physical Approaches and Sophisticated Imaging Techniques to Understand Quantum Particles in Solid Cells

2008 Prof. URI BANIN, Institute of Chemistry and the Center for Nanoscience and Nanotechnology, Faculty of Science
Department of Chemistry and the Center for Nanoscience and Nanotechnology, Faculty of Science
Using Quantum-Physical Approaches and Sophisticated Imaging Techniques to Understand Quantum Particles in Solid Cells

2007 Prof. HOWARD (CHAD) CEDIR, Institute for Medical Research Israël-Canada, Faculty of Medicine
Department of Developmental Biology and Cancer Research, Institute for Medical Research Israël-Canada, Faculty of Medicine
Using Quantum-Physical Approaches and Sophisticated Imaging Techniques to Understand Quantum Particles in Solid Cells

The Klachky Prize
For the Advancement of the Frontiers of Science
At the Hebrew University of Jerusalem
The Klachky Prize for the Advancement of Science

The Klachky Prize is an annual prize founded by the late Rachel Klachky in 2003. It is awarded for outstanding contributions to the advancement of the frontiers of science. The prize is given to Hebrew University faculty members for their achievements in:

- The Advancement of Science
- The Advancement of Scientific Research
- The Advancement of Scientific Knowledge
- The Advancement of the Frontiers of Science
- New Academic Developments
- Academic Ventures

The prize recognizes achievements in various fields, including theoretical astrophysics, mathematics, and physics. The prize is awarded annually to a faculty member for their contributions to the advancement of science.

The donor, Rachel Klachky (1925-2001), was born in Mexico and was married to the late Engineer Manuel Klachky. She was a central figure in the Jewish Community of Mexico and was one of the founding members of the Mexican Friends of the Hebrew University. In 1997, she received an Honorary Fellowship from the Hebrew University for her outstanding contributions to the State of Israel and the Hebrew University of Jerusalem.

After her passing, her sons, Roberto and Leopoldo, continued her legacy of support to the Hebrew University of Jerusalem. The Klachky Prize has been awarded since 2003.

Understanding Our Universe

Prof. Re‘em Sari’s research is spread over a wide range of topics in theoretical astrophysics, from the formation of planets through galactic dynamics to explosion of stars as supernovae or as gamma-ray bursts. He described the achievements of his research on the formation of planets, the dynamical behavior of the solar system, and the interaction between planets and their discs, which he showed that it could explain the various near-circular orbits of planets orbiting other stars. He shared his understanding of the role of the outer solar system in shaping the orbits of planets, which may be formed from regions in which they interact with each other.

Finally, Prof. Sari showed that the time scale for building planets in the same solar systems could be significantly shorter if the building blocks were small enough to create bodies that interact frequently. He contributed to the understanding of the properties of small bodies in our own solar system, including the evolution of the size distributions of Kuiper belt objects and the dynamics of the outer solar system. He also contributed to the understanding of the role of the outer solar system in shaping the orbits of planets, which may be formed from regions in which they interact with each other.

Prof. Sari’s research is spread over a wide range of topics in theoretical astrophysics, from the formation of planets through galactic dynamics to explosion of stars as supernovae or as gamma-ray bursts. He described the achievements of his research on the formation of planets, the dynamical behavior of the solar system, and the interaction between planets and their discs, which he showed that it could explain the various near-circular orbits of planets orbiting other stars. He shared his understanding of the role of the outer solar system in shaping the orbits of planets, which may be formed from regions in which they interact with each other.

Finally, Prof. Sari showed that the time scale for building planets in the same solar systems could be significantly shorter if the building blocks were small enough to create bodies that interact frequently. He contributed to the understanding of the properties of small bodies in our own solar system, including the evolution of the size distributions of Kuiper belt objects and the dynamics of the outer solar system. He also contributed to the understanding of the role of the outer solar system in shaping the orbits of planets, which may be formed from regions in which they interact with each other.

Prof. Sari’s research is spread over a wide range of topics in theoretical astrophysics, from the formation of planets through galactic dynamics to explosion of stars as supernovae or as gamma-ray bursts. He described the achievements of his research on the formation of planets, the dynamical behavior of the solar system, and the interaction between planets and their discs, which he showed that it could explain the various near-circular orbits of planets orbiting other stars. He shared his understanding of the role of the outer solar system in shaping the orbits of planets, which may be formed from regions in which they interact with each other.

Finally, Prof. Sari showed that the time scale for building planets in the same solar systems could be significantly shorter if the building blocks were small enough to create bodies that interact frequently. He contributed to the understanding of the properties of small bodies in our own solar system, including the evolution of the size distributions of Kuiper belt objects and the dynamics of the outer solar system. He also contributed to the understanding of the role of the outer solar system in shaping the orbits of planets, which may be formed from regions in which they interact with each other.